

Assessment of Wind and Photovoltaic Technical Potential for the Hawaiian Electric Company

Nick Grue, Katy Waechter, Travis Williams, Jane Lockshin National Renewable Energy Laboratory October 1, 2020 Updated July 30, 2021

List of Acronyms

Alternating Current
Direct Current
Department of Defense
Capacity Factor
Gigawatt
Gigawatt Hours
Ground Cover Ratio
Integrated Grid Planning
Square Kilometer
Kilowatt
Kilowatt Hours
Levelized Cost of Energy
Lidar Detection and Ranging (also Lidar)
Megawatt
Megawatt Hours
National Renewable Energy Laboratory
National Solar Radiation Database
Power Supply Improvement Plan
Photovoltaics
Coefficient of Determination
Renewable Energy Technical Potential (v) Model
System Advisor Model
Tax Map Keys
Typical Meteorological Year
Terrawatt Hours

Executive Summary

This report by the National Renewable Energy Laboratory (NREL) presents the findings of the utility-scale solar and wind and distributed rooftop solar technical potential for Hawaiian Electric's service territory on the Hawaiian Islands of O'ahu, Maui, Lāna'i, Moloka'i, and Hawai'i. The technical potential provides an upper boundary estimation of available land, potential capacity, and potential electricity generation for sites across the five islands. This is not meant to imply achievable market potential or cost-effectiveness, but rather limits of what is physic ally possible. This analysis does not take into consideration already existing sites, or economic or market considerations for siting new solar and wind power generating assets. Sites where both solar and wind could be deployed were examined separately and not exclusively. Techno-economic potential represents the economic costs associated with renewable generation that is available in a given geographic area. Economic potential, which is not addressed in this study, considers the costs of a technology and revenues to assess the economic viability of its development.

This work was conducted to support Hawaiian Electric's Integrated Grid Planning (IGP) process. It creates geographically specific estimations of developable capacity and generation across O'ahu, Maui, Lāna'i, Moloka'i, and Hawai'i, where previous renewable energy technical potential assessments focused exclusively on O'ahu, Maui, and Hawai'i¹. Multiple scenarios were considered for the utility-scale solar and wind technical potential results. The scenarios considered differing technological choices, as well as considerations for different land use and land category restrictions.

Table ES-1-6 below illustrate the results of the utility-scale solar, utility-scale wind, and distributed-scale rooftop solar technical potential in Hawaiian Electric service territory within developable areas by island. The utility-scale technical potential results are presented in terms of capacity (maximum power output measured in megawatts [MW]). Under this analysis, the technical potential for utility-scale solar with one-axis tracking arrays ranges between 16,284 (PV-1-3 scenario) and 193,656 (PV-2-HS scenario) MW, utility-scale solar with fixed-tilt arrays ranges between 18,306 (PV-1-3 scenario) and 217,706 (PV-2-HS scenario) MW, and utility-scale land-based wind ranges between 2,633 (WIND-3-20 scenario) and 5,031 (WIND-2-HS scenario) MW. Distributed-scale rooftop solar potential exceeds 7,000 MW.

Additional scenarios were developed based on feedback from the Ulupono Initiative, which further explored sensitivities related to land availability and costs for utility-scale solar and wind development. Table ES-2 and Table ES-5 describe the solar capacity and wind capacity results from these scenarios respectively. Additionally, the land availability assumptions and results are explored in greater detail in Appendix D.

Future work based on these technical potential analyses should consider additional validation between measured resource data and modeled data from the WIND Toolkit and National Solar Radiation Database as well as of Lidar data sources. The precision of rooftop

¹ Brancucci Martinez-Anido et al. 2016

solar technical potential analysis is significantly reduced by the overall quality and coarseness of the Lidar data sources used, which are under contract to be updated with at least Quality Level 2 coverage for all of Hawaii by the United States Geological Survey in 2020 with publication expected in 2021. These technical potential analyses provide insight into the availability of highquality wind and solar resources for Hawaii. Using the results, maps, and data layers made available to the public, additional investigations into identifying available lands can be conducted to find the best suitable land for new renewable energy development. While the technical potential analysis does not substitute on-the-ground investigations, state policies, community engagement, collaborative planning efforts, and other practical realities, it does allow for efficiency in focusing on lands with high resource potential and favorable land use constraints.

Table ES- 1: Summarized installable capacity in MW for Utility-Scale 1-Axis Tracking PV Systems All Scenarios; Lands with Capacity Factors >= 0.10

Island	PV-1-3	PV-1-5	PV-1-HS	PV-2-3	PV-2-5	PV-2-HS	PV-3-3	PV-3-5
Oʻahu	907	1954	9634	1412	2794	13965	561	1008
Molokaʻi	1225	3016	13387	1225	3016	13387	1177	2918
Maui	1038	2669	26728	1038	2669	26728	508	1411
Lāna'i	697	1478	9599	697	1478	9599	557	1199
Hawaiʻi	12417	29384	117231	15083	35319	129977	13621	31841

Table ES- 2: Summarized installable capacity in MW for Utility-Scale 1-Axis Tracking PV Systems Ulupono Scenarios; Lands with Capacity Factors >= 0.10

Island	PV-Alt-1	PV-Alt-2	PV-Alt-3	PV-Alt-4
Oʻahu	3810	7026	1405	2932
Molokaʻi	10411	10411	7107	7107
Maui	13687	13687	6613	6613
Lāna'i	9691	9691	6330	6330
Hawai'i	76179	89470	62198	74751

 Table ES- 3: Summarized installable capacity in MW for Utility-Scale Fixed Tilt PV Systems

 All Scenarios; Lands with Capacity Factors >= 0.10

Island	PV-1-3	PV-1-5	PV-1-HS	PV-2-3	PV-2-5	PV-2-HS	PV-3-3	PV-3-5
Oʻahu	1021	2199	10838	1588	3143	15710	632	1134
Molokaʻi	1378	3394	15060	1378	3394	15060	1324	3283
Maui	1168	3003	30069	1168	3003	30069	572	1587

Island	PV-1-3	PV-1-5	PV-1-HS	PV-2-3	PV-2-5	PV-2-HS	PV-3-3	PV-3-5
Lāna'i	784	1663	10798	784	1663	10798	627	1349
Hawaiʻi	13955	33024	131729	16954	39701	146069	15309	35788

Table ES- 4: Summarized installable capacity in MW for Utility-Scale Wind Systems All Scenarios; Lands with Wind Speeds >= 6.5 m/s

Island	WIND-1-20	WIND-1-HS	WIND-2-20	WIND-2-HS	WIND-3-20	WIND-3-HS	WIND-4-20	WIND-4-HS
Oʻahu	436	761	640	1147	230	465	333	728
Molokaʻi	951	1249	951	1249	688	958	688	958
Maui	634	940	634	940	421	659	421	659
Lāna'i	381	441	381	441	312	368	312	368
Hawaiʻi	1189	1254	1189	1254	982	1039	982	1039

Table ES- 5: Summarized installable capacity in MW for Utility-Scale Wind SystemsUlupono Scenarios; No Wind Speed Threshold

Island	WIND-Alt-1	WIND-Alt-2
Oʻahu	256	365
Molokaʻi	515	515
Maui	767	767
Lāna'i	509	509
Hawai'i	5037	5974

Table ES- 6: Summarized installable capacity in MW for Distributed-Scale PV Systems

Modeled and Imputed Roofs

Island	Area (km²)	Capacity (MW)
Oʻahu	19,968	3,934
Molokaʻi	378	45
Maui	5,768	1,113
Lāna'i	355	44
Hawaiʻi	15,560	2,163

Table of Contents

1	Intro	duction		10					
2	Utilit	y-Scale	Technical Potential Analysis	10					
	2.1	Backgr	ound	10					
	2.2	Data In	puts	12					
		2.2.1	Spatiotemporal Resource Data	12					
		2.2.2	Geographic Exclusions	12					
	2.3	.3 Modeling Approach							
	2.4	2.4 Analysis Results							
		2.4.1	Solar	16					
		2.4.2	Wind	19					
		2.4.3	Geospatial Data Layers	21					
	2.5	Next St	eps	22					
3	Distr	ibuted-	Scale Technical Potential Analysis	23					
	3.1	1 Background							
	3.2	Data Inputs							
		3.2.1	Lidar Point Clouds	24					
		3.2.2	Buildings	27					
		3.2.3	Spatiotemporal Resource Data	28					
	3.3	Modeli	ng Approach	28					
		3.3.1	PV Rooftop Model	28					
		3.3.2	Suitable Area Imputation	33					
	3.4	Analys	is Results	35					
		3.4.1	All Islands	35					
		3.4.2	Oʻahu	37					
	3.5	Next St	eps	37					
Ap	pendix	к А.	Solar and Wind Resource Maps	39					
Ap	pendix	B .	Geographic Exclusions	47					
Ap	pendix	C .	Technical Potential Summarizations	49					
Ap	pendix	d D.	Ulupono Follow-on Scenarios	81					

List of Figures

Figure 1: Various Types of Potentials Analysis	10
Figure 2: reV Model Flowchart	13
Figure 3: Utility-Scale (Left) and Distributed (Right) Wind Turbine Power Curves	14
Figure 4: Scene model for calculating local illumination (0-255)	29
Figure 5: Visualization of roof plane irradiance based on plane tilt, azimuth, and shading. Replicated	from
Gagnon et al. 2016	30
Figure 6: Azimuth classes of roof planes possible (left); azimuth classes considered suitable for solar	PV
deployment (right). Adapted from Gagnon et al. 2016	30
Figure 7: Roof plane slope and corresponding solar array tilt (Gagnon et al. 2016)	31
Figure 8: Scatter plot of modeled rooftop developable area and imputed rooftop developable area	34
Figure 9: Summary distributions for roof plane and building models	36
Figure 10: Hierarchical database model for DPV distribution	37

List of Tables

Table ES- 1: Summarized installable capacity in MW for Utility-Scale 1-Axis Tracking PV Systems All Scaparios: Landa with Capacity Factors ≥ 0.10	• •
Table FS- 2. Summarized installable canacity in MW for Utility-Scale 1-Axis Tracking PV Systems	.v
$\frac{1}{10000000000000000000000000000000000$	v
Table ES- 3: Summarized installable canacity in MW for Utility-Scale Fixed Tilt PV Systems All	••
Scenarios: Lands with Capacity Factors ≥ 0.10 .	.v
Table ES- 4: Summarized installable capacity in MW for Utility-Scale Wind Systems All Scenarios;	•••
Lands with Wind Speeds ≥ 6.5 m/s	vi
Table ES- 5: Summarized installable capacity in MW for Utility-Scale Wind Systems Ulupono Scenarios	s;
Lands with Wind Speeds ≥ 6.5 m/s	vi
Table ES- 6: Summarized installable capacity in MW for Distributed-Scale PV Systems	vi
Modeled and Imputed Roofs	vi
Table 1. Solar System Configurations 1	14
Table 2. Wind System Configuration 1	14
Table 3. Capacity Density for Utility-Scale Technologies1	15
Table 4. System Cost Configurations1	15
Table 5: Utility-Scale Solar PV Potential (MWac - 1-Axis Tracking) for O'ahu1	16
Table 6: Utility-Scale Solar PV Potential (MWac - 1-Axis Tracking) for Moloka'i	17
Table 7: Utility-Scale Solar PV Potential (MWac - 1-Axis Tracking) for Maui1	17
Table 8: Utility-Scale Solar PV Potential (MWac - 1-Axis Tracking) for Lāna'i1	17
Table 9: Utility-Scale Solar PV Potential (MWac - 1-Axis Tracking) for Hawai'i1	17
Table 10: Utility-Scale Solar PV Potential (MWac – Fixed Tilt) for O'ahu1	18
Table 11: Utility-Scale Solar PV Potential (MWac - Fixed Tilt) for Moloka'i	18
Table 12: Utility-Scale Solar PV Potential (MWac - Fixed Tilt) for Maui	18
Table 13: Utility-Scale Solar PV Potential (MWac - Fixed Tilt) for Lāna'i	19
Table 14: Utility-Scale Solar PV Potential (MWac - Fixed Tilt) for Hawai'i	19
Table 15: Wind Potential (MWac) for O'ahu	20
Table 16: Wind Potential (MWac) for Moloka'i	20
Table 17: Wind Potential (MWac) for Maui.	20
Table 18: Wind Potential (MWac) for Lāna [•] 1	20
Table 19: Wind Potential (MWac) for Hawai'i 20: 20: DDD Lith	21
Table 20. 3DEP Lidar Point Cloud Quality Levels Table 21. Lit	24
1 able 21. Lidar Surveys Processed for Kooftop Solar Technical Potential	20

Table 22. Distribution of Buildings Relative to Available Lidar	.27
Table 23. Criteria for Determining Roof Plane Suitability for Solar PV	.31
Table 24: Assumptions for PV Performance Simulations	.32
Table 25: Imputation and training set summary	.33
Table 26: Technical potential results by island and zone	.35
Table 27: Full Geographic Exclusions	.47
Table 28: Ulupono Scenarios Geographic Exclusions	.82
Table 29: Summarized installable capacity in MW for Utility-Scale 1-Axis Tracking PV Systems	
Ulupono Initiative Scenarios; Lands with Capacity Factor > 10%	.83
Table 30: Summarized installable capacity in MW for Utility-Scale Wind Systems Ulupono Initiative	
Scenarios; No Wind Speed Threshold	.83
PV Capacity by Capacity Factor for All Islands	.83
Table 31: Utility-Scale Solar PV Potential (MWac – 1-Axis Tracking) for O'ahu Ulupono Initiative	
Scenarios	.83
Table 31: Utility-Scale Solar PV Potential (MWac - 1-Axis Tracking) for Moloka'I Ulupono Initiative	
Scenarios	.84
Table 31: Utility-Scale Solar PV Potential (MWac - 1-Axis Tracking) for Maui Ulupono Initiative	
Scenarios	.84
Table 31: Utility-Scale Solar PV Potential (MWac - 1-Axis Tracking) for Lāna'i Ulupono Initiative	
Scenarios	.84
Table 31: Utility-Scale Solar PV Potential (MWac - 1-Axis Tracking) for Hawai'i Ulupono Initiative	
Scenarios	.85
Wind Capacity by Wind Speed for All Islands	.85
Table 36: Wind Potential (MWac) for O'ahu Ulupono Initiative Scenarios	.85
Table 37: Wind Potential (MWac) for Moloka'i Ulupono Initiative Scenarios	.85
Table 38: Wind Potential (MWac) for Maui Ulupono Initiative Scenarios	.85
Table 39: Wind Potential (MWac) for Lāna'i Ulupono Initiative Scenarios	.86
Table 40: Wind Potential (MWac) for Hawai'i Ulupono Initiative Scenarios	.86

1 Introduction

Hawaiian Electric is in the process of updating their Power Supply Improvement Plan (PSIP) to support the state of Hawaii's 100% Renewable Portfolio Standard (RPS) by 2045. The National Renewable Laboratory previously provided Hawaiian Electric with an assessment of wind and solar energy potential on Hawai'i, Maui, and O'ahu². This study serves to update and expand that previous analysis to assist Hawaiian Electric in revising their PSIP. The updates and expansions include assessment of rooftop potential for distributed PV generation, incorporation of spatiotemporal energy resource data rather than use of typical meteorological year data, narrowing of technologies to land-based utility-scale wind, utility-scale solar, and distributed-scale rooftop solar (omitting concentrated solar power technology), customization and scenarios for potential land development, and expanded spatial coverage to Hawai'i, Lāna'i, Maui, Moloka'i, and O'ahu. In conjunction with Hawaiian Electric's PSIP and current Integrated Grid Planning efforts, NREL is providing these data and analyses to Hawaiian Electric and stakeholders to help inform collaborative efforts in identifying the best options to affordably move Hawai'i toward a reliable and resilient clean energy future.

2 Utility-Scale Technical Potential Analysis

2.1 Background

The purpose of this project was to conduct a high-level evaluation of areas of land that are potentially available for new solar and wind development. This analysis typically is called a "technical potential" analysis, as it seeks to find land that is technically-viable for new development. Considerations that would fall under the purview of this analysis includes areas with high quality solar and/or wind resources; are located in areas with limited population density to support the development of utility-scale power systems; do not exist in areas with land use and land cover restrictions; are on lands that are sufficiently flat to reasonably accept the technology; and various other similar considerations. It is important to note, however, that the technical potential analysis does not seek to consider all aspects of new solar or wind development, most notably the economic, community and societal, or market factors that would determine whether a project is viable or not. Figure 1 provides an overview of the different types of potentials analysis. Additional analysis after the completion of the technical potential analysis can help to identify the areas with the economic and market factors that would facilitate new solar and wind development. Additionally, on-the-ground evaluation of land and discussions with local stakeholders will be critical to identify the highest potential areas for new development.

Figure 1: Various Types of Potentials Analysis

² Brancucci Martinez-Anido, C, B. Roberts, E. Chartan, A. Weekley, A. Lopez, B.-Mathias Hodge. 2016.

[&]quot;Technical Memo – Utility-Scale Onshore Wind, Utility-Scale PV, and CSP Potential Resource. Unpublished report.

Technical potential analysis like the type done for this project have been conducted for various geographic extents, including a previous iteration evaluating solar and wind development for Hawai'i. As part of the PSIP, the National Renewable Energy Laboratory (NREL) conducted a technical potential analysis in 2016 of three of the islands of Hawai'i: Hawai'i, Maui, and O'ahu³. Similarly, a national-level technical potential analysis guantified available land area for various types of renewable energy technologies.⁴ This analysis builds on the insights gained from these previous analyses, and in the case of the more recent PSIP effort, also includes the islands of Moloka'i and Lāna'i in the technical potential analysis.

A key development over the previous efforts to quantify available areas for solar and wind systems in Hawai'i is the development of the Renewable Energy Potential⁵ (reV) model. The reV model allows for the rapid evaluation of different technical potential and supply curve scenarios. Since development of the reV model in 2017, technical potential and supply curve analyses have been conducted by NREL staff for numerous geographic areas including the United States, Canada, Mexico, South Africa, Southeastern Asia, India, and other regions. Using solar and wind system configurations and cost inputs defined by Hawaiian Electric, publicly-available geospatial layers to designate land with competing uses, and feedback from local stakeholders, the reV model produced the technical potential results defined in this report.

³ Brancucci et al. 2016

⁴ Lopez, Anthony, Billy Roberts, Donna Heimiller, Nate Blair, and Gian Porro. "US Renewable Energy Technical Potentials: A GIS-Based Analysis," 2012. <u>https://www.nrel.gov/docs/fy12osti/51946.pdf</u>.

⁵ Galen J Maclaurin et al., "The Renewable Energy Potential (ReV) Model: A Geospatial Platform for Technical Potential and Supply Curve Modeling," 2019, https://doi.org/10.2172/1563140.

2.2 Data Inputs

2.2.1 Spatiotemporal Resource Data

In order to evaluate the potential solar and wind electrical output of various generators, the historical weather patterns for Hawai'i were evaluated using spatiotemporal resource datasets. These large-scale weather datasets are fed into the reV model in order to calculate yearly and multi-year average capacity factors and capacity factor profiles for pre-defined solar and wind generating technologies.

The National Solar Radiation Database⁶ (NSRDB) was used for calculating the photovoltaic (PV) system output for a 1-axis tracking and fixed-tilt PV system. The NSRDB provides half-hourly temporal resolution and 4km nominal spatial resolution weather data for most of the northwestern hemisphere. Twenty-two years of data are available from the NSRDB, spanning years 1998 through 2019. By using multiple decades-worth of weather data, a long-term mean can be established for solar irradiance and other weather factors that would affect the performance of PV systems.

The WIND Toolkit⁷ for Hawai'i provides hourly temporal resolution and a 2km nominal spatial resolution for the islands and near offshore regions of Hawai'i. The wind dataset used for this analysis includes twenty years of data, spanning years 2000 through 2019. Like the NSRDB dataset, using numerous years of wind data allows for the evaluation of a long-term average wind speed to increase the confidence in annual electrical generation of various wind generating technologies.

Maps of the solar and wind resources for Hawai'i originating from the above datasets can be found in Appendix A.

2.2.2 Geographic Exclusions

Each scenario for the technical potential and supply curve analysis used differing geographic exclusion assumptions. For the evaluation of utility-scale solar and wind, geographic exclusions were selected to exclude land considerations including federal and state protected lands, wetlands, lava flow zones, areas with high slope, agricultural areas (including Land Study Bureau Agricultural lands), urban areas, and other considerations. The scenarios for the solar and wind technologies were developed in order to understand the impacts of various exclusion assumptions on available land, installable nameplate capacity, annual generation, and resource quality. As there is a high amount of uncertainty about the availability of land for new development, the use of multiple scenarios allows for evaluating available lands under differing geographic constraints.

⁶ Manajit Sengupta et al., "The National Solar Radiation Data Base (NSRDB)," *Renewable and Sustainable Energy Reviews* 89 (2018): 51–60, https://doi.org/10.1016/j.rser.2018.03.003.

⁷ Caroline Draxl et al., "The Wind Integration National Dataset (WIND) Toolkit," *Applied Energy* 151 (2015): 355–66, https://doi.org/10.1016/j.apenergy.2015.03.121.

Once all geographic exclusion layers have been accounted for, an additional filter is applied to remove discrete clusters of available land pixels with too few adjacent pixels to support larger utility-scale PV systems. Each cluster of available land pixels are evaluated to determine the total available area of the cluster. For utility-scale PV systems, any clusters of land pixels that amount to less than 0.10 sq.km of available land are excluded from the available area calculations. Assuming a 32 MW/sq.km capacity density for 1-axis tracking systems, and 36 MW/sq.km for fixed tilt systems, the minimum system size would therefore be 3.2 MW and 3.6 MW respectively for the two PV technologies. This adjacent land pixel analysis was not applied to wind systems as the pad of the wind turbines are small when compared to utility-scale PV systems.

For a full list of all exclusions used for each solar and wind scenario, please see Appendix B.

2.3 Modeling Approach

The reV model allows for the rapid scenario-based analysis of solar and wind technical potentials and supply curves. The model progresses through a series of stages to calculate potential electrical output of solar and wind systems, calculate the site-based levelized cost of energy (LCOE), evaluate land areas that are potentially available for new development, and rank sites according to relative costs. A graphical depiction of the model is visualized in Figure 2 below.

Different system types were run for solar and wind systems. Table 1, Table 2, and Figure 3 below describe the configurations used for each system type during the System Generation Modeling phase of the reV model. These inputs affect the potential electrical output of the various solar or wind generating systems. It is important to note that guidance was given from

Hawaiian Electric to use a smaller wind turbine for the island of Moloka'i based on feedback received from community stakeholders. As a result, utility-scale wind turbines were used for modeling electrical generation for each island except Moloka'i. Moloka'i, on the other hand, used a smaller, distributed-scale wind turbine to produce nameplate capacity estimates, potential electrical generation, and site-based LCOE estimates.

System Type	DC/AC Ratio	Azimuth	Tilt	GCR*	Inverter Efficiency	Losses
1-Axis Tracking	1.3	180°	0°	0.43	98%	12.15%
Fixed Tilt	1.5	180°	15°	n/a	98%	14.90%

 Table 1. Solar System Configurations

*Ground Cover Ratio (GCR) is not considered for fixed tilt systems.

	Table 2. Wild System Comgutation											
System Type	Capacity	Hub Height	Rotor Diameter	Turbulence Coefficient	Wind Shear Coefficient	Losses						
Wind	3,450kW	105m	136m	0.132	0.31	16.70%						
Wind (Molokaʻi)	100kW	40m	27.6m	0.132	0.31	16.70%						

Table 2. Wind System Configuration

Figure 3: Utility-Scale (Left) and Distributed (Right) Wind Turbine Power Curves

Maps of the capacity factors resulting from the multi-year evaluation of electrical output for the solar and wind systems described above can be found in Appendix A.

To estimate the installable capacity for solar and wind, the capacity density estimates from previous studies was used.^{8,9} The resulting capacity estimates in this study are a result of multiplying the available area by the capacity density values listed in Table 3

 ⁸ Ong, S., et al. Land-Use Requirements for Solar Power Plants in the United States. 2013, doi:<u>10.2172/1086349</u>.
 ⁹ Denholm, P., et al. Land Use Requirements of Modern Wind Power Plants in the United States. 2009, doi:10.2172/964608.

System Type	Capacity Density	Minimum System Size
1-Axis Tracking	32 MW/sq.km	3.2 MW
Fixed Tilt	36 MW/sq.km	3.6 MW
Wind	3 MW/sq.km	N/A

Table 3. Capacity Density for Utility-Scale Technologies

During the Site-based LCOE stage of the reV model outlined in Figure 2, the cost inputs listed in Table 4 were used for the LCOE calculation. The LCOE calculation used the Fixed Charge Rate method, and is described in **Equation 1**.

-			-
System Type	Capital Cost	Fixed O&M Costs	Fixed Charge Rate
1-Axis Tracking	\$620/kWac	\$15/kWac-yr	10.27%
Fixed Tilt	\$575/kWac	\$14/kWac-yr	10.27%
Wind	\$2,017/kWac	\$47/kWac-yr	10.27 %
Wind (Molokaʻi)	\$6,231/kWac	\$67/kWac-yr	10.27%

Table 4. System Cost Configurations

Equation 1: LCOE Calculation

$$LCOE = \frac{(CC * FCR) + FOM}{NetCF * 8760}$$

Once the potential electrical output and LCOE has been calculated for every site across Hawai'i, geographic exclusions are applied to remove areas from consideration for new solar and wind deployment. Geographic exclusions consider land categories including restricted federal lands, restricted state lands, wetlands, lava flow areas, flood zones, urban areas (for utility-scale modeling), setbacks to roads and buildings, and prohibitive slope.

2.4 Analysis Results

2.4.1 Solar

The scenarios for the solar technical potential were created using both a fixed tilt system and a 1axis tracking system. The full list of exclusions used for each scenario are listed in Appendix B, but are summarized below:

- 1. PV-1-3: Exclude some federal lands, urban areas, all state parks, wetlands, lava flow areas, flood zones, most agricultural areas, slope > 3%, and Dept. of Defense lands.
- 2. PV-1-5: Exclude some federal lands, urban areas, all state parks, wetlands, lava flow areas, flood zones, most agricultural areas, slope > 5%, and Dept. of Defense lands.
- 3. PV-1-HS: Exclude some federal lands, urban areas, all state parks, wetlands, lava flow areas, flood zones, most agricultural areas, slope > 40%, and Dept. of Defense lands. This is a high slope scenario.
- 4. PV-2-3: Exclude some federal lands, urban areas, all state parks, wetlands, lava flow areas, flood zones, most agricultural areas, slope > 3%, but include Dept. of Defense lands.
- 5. PV-2-5: Exclude some federal lands, urban areas, all state parks, wetlands, lava flow areas, flood zones, most agricultural areas, slope > 5%, but include Dept. of Defense lands.
- 6. PV-2-HS: Exclude some federal lands, urban areas, all state parks, wetlands, lava flow areas, flood zones, most agricultural areas, slope > 40%, but include Dept. of Defense lands. This is a high slope scenario.
- PV-3-3: Exclude some federal lands, urban areas, all state parks, wetlands, lava flow areas, flood zones, agricultural areas and Land Study Bureau Agricultural lands at 90% area exclusion, slope > 3%, but include Dept. of Defense lands.
- 8. PV-3-5: Exclude some federal lands, urban areas, all state parks, wetlands, lava flow areas, flood zones, agricultural areas and Land Study Bureau Agricultural lands at 90% area exclusion, slope > 5%, but include Dept. of Defense lands.

The capacity estimates for each island are listed in the tables below, and plots describing the data are included in Appendix C.

2.4.1.1 1-Axis Tracking Utility-Scale Solar PV Technical Potential Results

		-		-				
NetCF	PV-1-3	PV-1-5	PV-1-HS	PV-2-3	PV-2-5	PV-2-HS	PV-3-3	PV-3-5
>= 0.10	907	1954	9634	1412	2794	13965	561	1008
>= 0.12	907	1954	9634	1412	2794	13965	561	1008
>= 0.14	907	1954	9634	1412	2794	13965	561	1008

 Table 5: Utility-Scale Solar PV Potential (MWac - 1-Axis Tracking) for O'ahu

NetCF	PV-1-3	PV-1-5	PV-1-HS	PV-2-3	PV-2-5	PV-2-HS	PV-3-3	PV-3-5
>= 0.16	906	1949	8959	1411	2788	13283	561	1006
>= 0.18	899	1920	8238	1403	2759	11971	558	994
>= 0.20	886	1862	6672	1355	2612	8945	543	938

Table 6: Utility-Scale Solar PV Potential (MWac - 1-Axis Tracking) for Moloka'i

NetCF	PV-1-3	PV-1-5	PV-1-HS	PV-2-3	PV-2-5	PV-2-HS	PV-3-3	PV-3-5
>= 0.10	1225	3016	13387	1225	3016	13387	1177	2918
>= 0.12	1225	3016	13387	1225	3016	13387	1177	2918
>= 0.14	1225	3016	13387	1225	3016	13387	1177	2918
>= 0.16	1225	3016	13387	1225	3016	13387	1177	2918
>= 0.18	1225	3016	12948	1225	3016	12948	1177	2918
>= 0.20	1224	3010	12344	1224	3010	12344	1176	2915

Table 7: Utility-Scale Solar PV Potential (MWac - 1-Axis Tracking) for Maui

NetCF	PV-1-3	PV-1-5	PV-1-HS	PV-2-3	PV-2-5	PV-2-HS	PV-3-3	PV-3-5
>= 0.10	1038	2669	26728	1038	2669	26728	508	1411
>= 0.12	1038	2669	26728	1038	2669	26728	508	1411
>= 0.14	1038	2669	26678	1038	2669	26678	508	1411
>= 0.16	1038	2668	26153	1038	2668	26153	508	1411
>= 0.18	1037	2667	25815	1037	2667	25815	508	1410
>= 0.20	999	2496	22540	999	2496	22540	474	1264

Table 8: Utility-Scale Solar PV Potential (MWac - 1-Axis Tracking) for Lāna'i

NetCF	PV-1-3	PV-1-5	PV-1-HS	PV-2-3	PV-2-5	PV-2-HS	PV-3-3	PV-3-5
>= 0.10	697	1478	9599	697	1478	9599	557	1199
>= 0.12	697	1478	9599	697	1478	9599	557	1199
>= 0.14	697	1478	9599	697	1478	9599	557	1199
>= 0.16	697	1478	9599	697	1478	9599	557	1199
>= 0.18	697	1478	9599	697	1478	9599	557	1199
>= 0.20	697	1478	9599	697	1478	9599	557	1199

Table 9: Utility-Scale Solar PV Potential (MWac - 1-Axis Tracking) for Hawai'i

NetCF	PV-1-3	PV-1-5	PV-1-HS	PV-2-3	PV-2-5	PV-2-HS	PV-3-3	PV-3-5
>= 0.10								
>= 0.12	12417	29384	117231	15083	35319	129977	13621	31841

NetCF	PV-1-3	PV-1-5	PV-1-HS	PV-2-3	PV-2-5	PV-2-HS	PV-3-3	PV-3-5
>= 0.14	12404	29355	117093	15070	35290	129839	13608	31811
>= 0.16	12395	29261	115697	15061	35196	128443	13599	31722
>= 0.18	11682	26886	100188	14348	32821	112935	13011	29879
>= 0.20	7607	16603	73121	10272	22537	85866	9186	20405

2.4.1.2 Fixed Tilt Utility-Scale Solar PV Technical Potential Results

Table 10: Utility-Scale Solar PV Potential (MWac – Fixed Tilt) for O'ahu

NetCF	PV-1-3	PV-1-5	PV-1-HS	PV-2-3	PV-2-5	PV-2-HS	PV-3-3	PV-3-5
>= 0.10	1021	2199	10838	1588	3143	15710	632	1134
>= 0.12	1021	2199	10838	1588	3143	15710	632	1134
>= 0.14	1018	2185	9801	1586	3129	14649	631	1128
>= 0.16	1006	2139	8160	1549	3011	11328	617	1080
>= 0.18	88	134	660	261	331	1109	99	120
>= 0.20	0	0	0	0	0	0	0	0

Table 11: Utility-Scale Solar PV Potential (MWac - Fixed Tilt) for Moloka'i

NetCF	PV-1-3	PV-1-5	PV-1-HS	PV-2-3	PV-2-5	PV-2-HS	PV-3-3	PV-3-5
>= 0.10	1378	3394	15060	1378	3394	15060	1324	3283
>= 0.12	1378	3394	15060	1378	3394	15060	1324	3283
>= 0.14	1378	3394	14800	1378	3394	14800	1324	3283
>= 0.16	1377	3387	14030	1377	3387	14030	1323	3280
>= 0.18	1373	3375	12343	1373	3375	12343	1319	3268
>= 0.20	0	0	0	0	0	0	0	0

Table 12: Utility-Scale Solar PV Potential (MWac - Fixed Tilt) for Maui

NetCF	PV-1-3	PV-1-5	PV-1-HS	PV-2-3	PV-2-5	PV-2-HS	PV-3-3	PV-3-5
>= 0.10	1168	3003	30069	1168	3003	30069	572	1587
>= 0.12	1168	3003	30001	1168	3003	30001	572	1587
>= 0.14	1167	3002	29378	1167	3002	29378	572	1587
>= 0.16	1162	2961	25893	1162	2961	25893	567	1552
>= 0.18	938	2161	10078	938	2161	10078	423	1041
>= 0.20	0	0	372	0	0	372	0	0

NetCF	PV-1-3	PV-1-5	PV-1-HS	PV-2-3	PV-2-5	PV-2-HS	PV-3-3	PV-3-5
>= 0.10	784	1663	10798	784	1663	10798	627	1349
>= 0.12	784	1663	10798	784	1663	10798	627	1349
>= 0.14	784	1663	10798	784	1663	10798	627	1349
>= 0.16	784	1663	10798	784	1663	10798	627	1349
>= 0.18	273	554	6417	273	554	6417	244	499
>= 0.20	0	0	0	0	0	0	0	0

Table 13: Utility-Scale Solar PV Potential (MWac - Fixed Tilt) for Lāna'i

Table 14: Utility-Scale Solar PV Potential (MWac - Fixed Tilt) for Hawai'i

NetCF	PV-1-3	PV-1-5	PV-1-HS	PV-2-3	PV-2-5	PV-2-HS	PV-3-3	PV-3-5
>= 0.10	13955	33024	131729	16954	39701	146069	15309	35788
>= 0.12	13940	32868	128694	16940	39544	143033	15295	35644
>= 0.14	12063	26810	101290	15062	33487	115630	13646	30443
>= 0.16	5922	13251	58688	8602	19608	72707	7774	18065
>= 0.18	1819	4359	21369	3805	8875	31455	3790	8723
>= 0.20	0	4	764	0	4	766	0	4

2.4.2 Wind

The full list of exclusions used for each wind scenario are listed in Appendix B, but are summarized below:

- 1. WIND-1-20: Exclude some federal lands, urban areas, all state parks, wetlands, lave flow areas, flood zones, most agricultural areas, slope > 20%, and Dept. of Defense lands.
- 2. WIND-1-HS: Exclude some federal lands, urban areas, all state parks, wetlands, lave flow areas, flood zones, most agricultural areas, slope > 40%, and Dept. of Defense lands. This is a high slope scenario.
- 3. WIND-2-20: Exclude some federal lands, urban areas, all state parks, wetlands, lave flow areas, flood zones, most agricultural areas, slope > 20%, but include Dept. of Defense lands.
- 4. WIND-2-HS: Exclude some federal lands, urban areas, all state parks, wetlands, lave flow areas, flood zones, most agricultural areas, slope > 40%, but include Dept. of Defense lands. This is a high slope scenario.
- 5. WIND-3-20: Exclude some federal lands, urban areas, all state parks, wetlands, lave flow areas, flood zones, most agricultural areas, slope > 20%, road, building, and transmission right-of-way setbacks, and Dept. of Defense lands.

- 6. WIND-3-HS: Exclude some federal lands, urban areas, all state parks, wetlands, lave flow areas, flood zones, most agricultural areas, slope > 40%, road, building, and transmission right-of-way setbacks, and Dept. of Defense lands. This is a high slope scenario.
- 7. WIND-4-20: Exclude some federal lands, urban areas, all state parks, wetlands, lave flow areas, flood zones, most agricultural areas, slope > 20%, road, building, and transmission right-of-way setbacks, but include Dept. of Defense lands.
- 8. WIND-4-HS: Exclude some federal lands, urban areas, all state parks, wetlands, lave flow areas, flood zones, most agricultural areas, slope > 40%, road, building, and transmission right-of-way setbacks, but include Dept. of Defense lands. This is a high slope scenario.

The capacity estimates for each island are listed in the tables below, and plots describing the data are included in Appendix C.

WS (m/s)	WIND-1-20	WIND-1-HS	WIND-2-20	WIND-2-HS	WIND-3-20	WIND-3-HS	WIND-4-20	WIND-4-HS
>= 6.5	436	761	640	1147	230	465	333	728
>= 7.5	255	521	427	870	129	312	214	553
>= 8.5	164	359	317	681	89	224	167	450

Table 15: Wind Potential (MWac) for O'ahu

Table 16: Wind Potential (MWac) for Moloka'i

WS (m/s)	WIND-1-20	WIND-1-HS	WIND-2-20	WIND-2-HS	WIND-3-20	WIND-3-HS	WIND-4-20	WIND-4-HS
>= 6.5	951	1249	951	1249	688	958	688	958
>= 7.5	931	1226	931	1226	677	945	677	945
>= 8.5	562	766	562	766	389	576	389	576

Table 17: Wind Potential (MWac) for Maui

WS (m/s)	WIND-1-20	WIND-1-HS	WIND-2-20	WIND-2-HS	WIND-3-20	WIND-3-HS	WIND-4-20	WIND-4-HS
>= 6.5	634	940	634	940	421	659	421	659
>= 7.5	461	646	461	646	305	441	305	441
>= 8.5	308	434	308	434	200	293	200	293

Table 18: Wind Potential (MWac) for Lāna'i

WS (m/s)	WIND-1-20	WIND-1-HS	WIND-2-20	WIND-2-HS	WIND-3-20	WIND-3-HS	WIND-4-20	WIND-4-HS
>= 6.5	381	441	381	441	312	368	312	368
>= 7.5	253	289	253	289	215	250	215	250

WS (m/s)	WIND-1-20	WIND-1-HS	WIND-2-20	WIND-2-HS	WIND-3-20	WIND-3-HS	WIND-4-20	WIND-4-HS
>= 8.5	109	118	109	118	83	90	83	90

WS (m/s)	WIND-1-20	WIND-1-HS	WIND-2-20	WIND-2-HS	WIND-3-20	WIND-3-HS	WIND-4-20	WIND-4-HS
>= 6.5	1189	1254	1189	1254	982	1039	982	1039
>= 7.5	742	791	742	791	592	633	592	633
>= 8.5	538	570	538	570	415	441	415	441

Table 19: Wind Potential (MWac) for Hawai'i

2.4.3 Geospatial Data Layers

In order to allow for greater input from stakeholders and the public, web mapping applications were set up to allow for the visualization of the inclusion areas derived from the exclusion assumptions described above. The layers created for each of the PV and Wind exclusion scenarios can be visualized and evaluated by the public using the URLs below. Please note that in the case of the 1-axis tracking vs. fixed tilt PV systems, the inclusion areas do not change as the exclusion assumptions are not altered between the two PV system types. The capacity factors and installable capacity are different, as is apparent from the results tables above, but the actual areas of land included do not change, therefore there are only 1 set of PV exclusion layers listed in the web mapping applications below:

- Solar Inclusion Map Application: <u>https://bit.ly/33pJ0ep</u>
 - Full URL: <u>https://nrel.carto.com/u/gds-member/builder/8f3209fc-76ba-41a7-9b3f-1947e056bf41/embed</u>
- Wind Inclusion Map Application: <u>https://bit.ly/34ncwkr</u>
 - Full URL: <u>https://nrel.carto.com/u/gds-member/builder/70be8a3c-7643-41c3-8169-0a11235136ba/embed</u>

The layers visualized in the applications above can also be downloaded and viewed within open-source Geographic Information System (GIS) software including Quantum GIS, or within proprietary GIS software including ArcGIS:

- Maps and Data: <u>https://bit.ly/34jAMUv</u>
 - Full URL: <u>https://app.box.com/s/qskohxbi5678g88iehi10msmq0vby2rv</u>

2.5 Next Steps

The technical potential analysis described above provides insight into the availability of high quality wind and solar resources for Hawai'i. Using the results, maps, and data layers made available to the public, additional investigation into available lands can be conducted to find the best suitable land for new solar and wind development. Though the technical potential analysis does not substitute on-the-ground investigation, community acceptance, and other policies, it allows for greater efficiency in focusing on lands with high resource potential and favorable land use considerations.

3 Distributed-Scale Technical Potential Analysis

3.1 Background

This section of the report focuses on quantifying the technical potential of photovoltaic systems deployed on existing suitable roof areas in the Hawaiian Electric service territory. Technical potential is a metric that quantifies the maximum generation available from a technology for a given area and does not consider the economic or market viability. Distributed-Scale technical potential refers to small-scale technologies to produce electricity (1 kW-100 MW) close to the end users of power, specifically rooftop-mounted solar photovoltaic panels in this case. Rooftops provide a large expanse of underutilized areas for solar energy generation. Rooftop solar can be stand-alone, particularly in the case of microgrids. Additionally, rooftop solar can reduce demand on the grid at peak times, minimizing congestion of power on the network. In cases such as Hawai'i, which is an evening peaking system, rooftop solar generation is most effective when paired with storage.

Several existing tools and methods can be used to estimate the solar energy potential of a single home or building, including Google's Project Sunroof and Mapdwell's SolarSystem. Although Project Sunroof has some detailed analysis in parts of Hilo, Kailua-Kona, Kihei, Wailea-Makena, Kahului, and other municipalities in southern O'ahu, its coverage is incomplete while Mapdwell has not published any data products for the state of Hawai'i. NREL has not previously estimated rooftop solar technical potential in Hawai'i¹⁰. To fill these gaps, we provide a data-driven analysis of building and parcel level rooftop PV suitability and technical electricity-generation potential. This analysis expands upon previous NREL research investigating rooftop solar technical using light detection and ranging (LiDAR) scans of individual rooftops in 128 metropolitan regions in the continental United States¹¹.

3.2 Data Inputs

Assessing rooftop solar technical potential requires three primary data sets: continuous model of the built environment, building footprints, and solar resource data. The building environment model and building footprints are processed to determine the shading, tilt, and azimuth of each rooftop at a horizontal resolution between 0.5-2 square meters. A set of criteria is then applied to determine what roof area is suitable for PV deployment. Following delineation of suitable roof areas, those suitable roof areas are used to estimate electricity-generation using NREL's System

¹⁰ Gagnon, P., R. Margolis, J. Melius, C. Phillips, and R. Elmore. 2016. *Rooftop Solar Photovoltaic Technical Potential in the United States: A Detailed Assessment*. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-65298. <u>https://www.nrel.gov/docs/fy16osti/65298.pdf</u>.

¹¹ Gagnon, P. R. Margolis, J. Melius, C. Phillips, and R. Elmore. 2018. "Estimating Rooftop Solar Technical Potential Across the US Using a Combination of GIS-Based Methods, LiDAR Data, and Statistical Modeling." *Environmental Research Letters* 13(2):024027. <u>https://doi.org/10.1088/1748-9426/aaa/554</u>,

Advisor Model¹². These results can be aggregated to determine the total quantity of roof area suitable for PV systems at the building, parcel, island levels, and beyond.

3.2.1 Lidar Point Clouds

To model the built environment, primarily targeting building rooftop surfaces as well as shading obstructions, we use LiDAR scans to create high-resolution digital surface models. Rooftop surfaces models can also use photogrammetric surface models, such as Project Sunroof, or other 3D products. High resolution LiDAR scans allow for increased precision in mapping rooftop planes and features, including gutters, ridges, troughs, and appurtenances.

Light Detection and Ranging (LiDAR or Lidar) is an active remote sensing system that emits light quickly strobing from a laser light source. The light travels to the ground and reflects off of things in-between the sensor and the ground. A Lidar system measures the time it takes for emitted light to travel to the ground and back and calculates distance traveled for each pulse. This distance can be converted to elevation. These measurements are made using a Global Positioning System that identifies the X, Y, Z location of the light energy as well as an Internal Measurement Unit that provides the orientation of the sensor.

Lidar data attributes vary depending on how the data were collected and processed, which are typically listed in point cloud or survey metadata files. Most Lidar points have an intensity value (representing the amount of light energy recorded by the sensor), horizontal coordinates, and elevation. Some Lidar data are also classified before release, indicating the type of object that the laser return reflected off of. Classified data typically omit unwanted noise from the first-returns surface and reduce the overall data volume to be processed. However, they can sometimes omit usable data that indicate rooftop appurtenances. Unclassified data typically pass artifacts and systematic biases on to the released data product.

Quality Level	Pulse Spacing (m)	Pulse Density (pls/m²)	Overall Vertical RMSE	Minimum Derived Surface Resolution (m)
QL0	≤0.35	≥8.0	≤0.05	0.5
QL1	≤0.35	≥8.0	≤0.10	0.5
QL2	≤0.71	≥2.0	≤0.10	1
QL3	≤1.41	≥0.5	≤0.20	2

Table 20. 3DEP Lidar Point Cloud Quality Levels

¹² Blair, N., N. NiOrio, J. Freeman, P. Gilman, S. Janzou, T. Neises, and M. Wagner. 2018. *System Advisor Model (SAM) General Description (Version 2017.9.5)*. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-70414. <u>https://www.nrel.gov/docs/fy18osti/70414.pdf</u>.

Assessing rooftop suitability for PV arrays requires a maximum first-returns surface model spatial resolution of 2 meters. This resolution requirement is based on the maximum pulse spacing and density and overall effects to accuracy (Table 3). As standards have changed in the past decade, current specifications from United States Geological Survey (USGS) and Federal Emergency Management Agency (FEMA) require Quality Level 2 (QL2) for most purposes¹³. Lidar data at Quality Level 3 may be used for non-essential mapping.

The Lidar data used in this analysis were obtained directly from the State of Hawai'i¹⁴, USGS¹⁵, or indirectly NOAA's Interagency Elevation Inventory¹⁶. In Hawai'i, most publicly available Lidar data was collected for the purpose of shoreline mapping, flood risk mapping, and bathymetric mapping by federal or state agencies. Bathymetric Lidar is not suitable for terrestrial mapping since the sensors operate in different wavelengths and capture different targets. The availability of Lidar for this study is biased to the coastlines except for the Island of O'ahu, where most of the island was covered in a single collection from 2013 (Dewberry 2014). For this analysis, 15 separate Lidar datasets were processed to derive first-return surface (Table 2). These datasets were collected by contractors separately on behalf of federal and state agencies or by scholars and released by federal agencies. The datasets vary significantly in quality and accuracy. Each survey was processed and modeled using its minimum achievable resolution. The spatial distribution of aggregated survey statistics can be found in Table 20.

https://histategis.maps.arcgis.com/apps/webappviewer/index.html?id=7c22201923084f749e6626e3e195de71.

¹³ FEMA. 2016. "Guidance for Flood Risk Analysis and Mapping: Elevation Guidance." Guidelines and Specifications for Flood Hazard Mapping Partners and Procedure Memorandum 61 – Standards for LiDAR and Other High Quality Digital Topography, Appendix A.

¹⁴ State of Hawaii GIS Program. 2002-2018. *Lidar Point Clouds Collection*. [LAZ compressed point clouds]. Retrieved from

¹⁵ USGS. 2020. *The National Map: 3DEP Lidar Point Clouds*. [LAZ compressed point clouds]. Retrieved from <u>https://viewer.nationalmap.gov/basic/</u>.

¹⁶ NOAA. 2020. *United States Interagency Elevation Inventory*. [LAZ compressed point clouds]. Retrieved from <u>https://coast.noaa.gov/inventory/</u>.

Distributor	Island	Survey Name	Project Name	Classified	Cell Size	Collection Year
NOAA	Hawaiʻi	Big Island Extracted	FEMA Lidar: Hawaiian Islands	x	2	2006
	Lāna'i	Lāna'i Last Pulse Extracted	FEMA Lidar: Hawaiian Islands	Х	2	2006
	Maui	Maui Last Pulse Extracted	FEMA Lidar: Hawaiian Islands	Х	2	2006
	Oʻahu	Oʻahu 2013	NOAA Oʻahu	Х	2	2013
	Hawaiʻi	Kilaeuea A1	Kilaeuea Volcano		0.5	2018
		Kona Extract	DBEDT Lidar: Hawai'i Kona		2	2006
		Pelekane	Pelekane Watershed		0.5	2015
State of	Lānaʻi	Lāna'i A1	Unknown	*	2	
GIS	Maui	Central BE	Unknown		1	2015
		femafema	DBEDT Lidar: Maui (Kihei)		2	2005
		Prior1A Extract	DBEDT Lidar: Maui (Kihei)		2	2005
		Prior1B Extract	DBEDT Lidar: Maui (Kihei)		2	2005
		Maui PSC	Maui (West Coast) and Oʻahu (Ewa to Honolulu)		2	2005
		Upcountry	Maui County Lidar: Maliko to Nahiku		2	2005
USGS	Hawaiʻi	OT Puna	Kohala Peninsula	Х	0.5	2013

 Table 21. Lidar Surveys Processed for Rooftop Solar Technical Potential

3.2.2 Buildings

Building footprints data sets represent the planimetric extent and shape of a building in vector format. Building footprints do not represent building area except in the cases of single-story buildings. Microsoft's US Building Footprints data set for Hawai'i was used for this analysis. This computer-generated building footprints data set uses semantic segmentation and polygonization to delineate building extent from high resolution true color aerial imagery (Microsoft 2019). The classifier is trained on 5 million labeled images, primarily for residential areas, in a diverse set of land cover settings. In the majority of cases, the quality of this data is at least as good as digitized buildings in OpenStreetMap. Its accuracy is diminished in dense urban areas.

In Hawai'i, Microsoft has recorded 252,891 building footprints while the islands of Hawai'i, Lāna'i, Maui, Moloka'i, and O'ahu have a combined 234,036 building footprints. Of these building footprints on the five-island territory, 75% of these building footprints overlap with extant Lidar data (Table 21). These buildings constitute 51,889 square kilometers of rooftop area with built environment models. However, 16,281 square kilometers of rooftop area within the five-island territory do not have corresponding built environment models.

	Hawai' i	Lānaʻi	Maui	Moloka' i	Oʻahu	Total
Buildings Count	65,224	1,182	31,641	2,027	133,949	234,023
Buildings with Lidar Data	16,848	27	30,306	-	129,692	176,873
Buildings without Lidar Data	48,376	1,155	1,335	2,027	4,257	57,150
Proportion of Buildings with Lidar	29%	5%	96%	0%	97%	
Square Kilometer of Building Footprint with Lidar	5,629	16	8,994	-	37,248	51,887

Table 22. Distribution of Buildings Relative to Available Lidar

Even though the Microsoft buildings data set is not the most accurate buildings data set for all areas in Hawai'i, it is one of the only statewide available data sets for buildings in Hawai'i. Two municipal data sets, Building Footprints 2013 and Building Footprints (City and County of Honolulu), for O'ahu only were found that are manually maintained and updated. County-maintained building data sets outside of O'ahu and City and County of Honolulu were not publicly available at time of this analysis. Within the study area, 92% of buildings are considered small (\leq 5,000 square feet per footprint) with 7% and 1% considered medium (5,000-25,000 square feet per footprint) and large (25,000+ square feet per footprint) respectively.

3.2.3 Spatiotemporal Resource Data

Similar to the utility-scale PV analysis, NSRDB¹⁷ was used for calculating the PV generation for a roof-mounted fixed-tilt solar system. The NSRDB provides half-hourly temporal resolution and 4-kilometer nominal spatial resolution weather data for most of the Northern hemisphere. Generation for years 2014 through 2018 was calculated for these prospective arrays on suitable roof planes.

3.3 Modeling Approach

3.3.1 PV Rooftop Model

This section presents an overview of our approach to (1) estimating the rooftop area that is suitable for rooftop solar and (2) estimation of building technical potential. These methods allow for accurate and flexible modeling of roof plane suitability for solar PV deployment and estimation of corresponding technical potential. This analysis builds on previous work by NREL (Gagnon et al. 2016) using Lidar data to model rooftop suitability for solar photovoltaics. Lidar first return surfaces can be used to infer the presence of individual buildings and their footprints, as well as the area, tilt, azimuth, and shading of each distinct geometric plane on a building's roof. Based on these characteristics, the technical performance for individual planes suitable for solar PV are estimated using the System Advisor Model, which are aggregated to building-level estimates.

3.3.1.1 Shading

Using the Lidar scans of areas within the Hawaiian Electric service territory, NREL developed a geospatial predictive model to identify rooftop panes suitable for rooftop-mounted solar PV given the roof's orientation (tilt and azimuth) and shading characteristics. Lidar scans, as opposed to aerial imagery, allow us to infer the building footprint and unshaded roof area, azimuth, and tilt for each distinct roof plane. To account for potential shading from adjacent buildings, vegetation, topography, and other obstacles, hourly shading models were generated using NREL's Solar Position Algorithm¹⁸ and the Lidar first-returns digital surface models for roof pixel areas. The altitude and azimuth of the sun and local slope and aspect of the Lidar surface are used to calculate local illumination for a specific pixel as described by Equation 2 and illustrated by Figure 4, a value proportional to the direct solar energy that reaches the pixel.

¹⁷ Manajit Sengupta et al., "The National Solar Radiation Data Base (NSRDB)," *Renewable and Sustainable Energy Reviews* 89 (2018): 51–60, https://doi.org/10.1016/j.rser.2018.03.003.

¹⁸ Reda, I. and A. Andreas. 2008. *Solar Position Algorithm for Solar Radiation Applications*. Golden, CO: National Renewable Energy Laboratory. NREL/TP-560-34302. https://www.nrel.gov/docs/fy08osti/34302.pdf.

Local areas were defined as within three neighboring pixels for the purpose of this study, which may vary by proposed system size.

Equation 2: Per-pixel illumination calculation using Lidar first-returns digital surface model

$$Illumination = 255 * \begin{pmatrix} \cos(90 - solar \ altitude) * \cos(local \ slope) \\ +(\sin(90 - solar \ altitude) * \sin(local \ slope) \\ * \cos(solar \ azimuth - local \ aspect) \end{pmatrix}$$

Figure 4: Scene model for calculating local illumination (0-255)

In addition to considering illumination, each hourly shading model considers a direct line-ofsight from each pixel to the sun. If a 3D line-of-sight from any given pixel to the sun is interrupted, whether from architecture, topography, vegetation, or other obstacle, the pixel is considered to be shaded in that hourly occurrence. Hourly shading models represent percent illumination for each pixel unless the pixel does not receive direct solar energy in that hour.

As shading varies seasonally, hourly shading models were generated for four days of the most recent analysis year – the vernal equinox (March 20), summer solstice (June 21), autumnal equinox (September 22), and winter solstice (December 21). These shading models result in the number of hours of sunlight each square meter of roof area received on those simulated days as shown in Figure 5. The hours of sunlight from the four representative days were used to determine the daily sunlight for each square meter, and this metric was used to exclude roof areas that are excessively shaded ($\geq 20\%$ total overall shading). Previous uses of the PV Rooftop model by Gagnon et al. 2016 considered excessively shaded areas to be areas not contributing towards meeting 80% of unshaded generation potential.

3.3.1.2 Azimuth and Tilt

The tilt (slope) and orientation (azimuth) of a roof plane is important for determining its suitability for PV as well as creating a generation profile. Using the first returns of the Lidar, we determine the average tilt and azimuth of each square meter of roof area. Each square meter was categorized into one of nine azimuth classes, shown in Figure 6, where tilted roof areas were assigned one of the eight cardinal and primary intercardinal directions. Planes with a slope less than 9.5° were classified as flat or open. For roof planes with slopes above 9.5°, we used five non-flat tilt classes. Roof planes that fall within the thresholds of a given class between 9.5° and 60° are assigned a midrange tilt for the tilt class. For example, any roof plane with a slope between 22.1° and 34.8° was considered to use an array tilt of 28.4° as shown in Figure 7. For roof planes classified as flat, an array tilt of 15° was assumed.

Figure 6: Azimuth classes of roof planes possible (left); azimuth classes considered suitable for solar PV deployment (right). Adapted from Gagnon et al. 2016.

Figure 7: Roof plane slope and corresponding solar array tilt (Gagnon et al. 2016).

The tilt and azimuth values of the roof square meter to identify distinct roof planes, assuming contiguous areas of identical tilt-azimuth classes were a unique plane, aggregating each of the individual square meters of roof area into polygons representing contiguous roof planes. This results in a classification of tilt and azimuth for each unique roof plane. To identify developable surfaces for PV installment, a zonal mean neighborhood function was used to identify and remove data noise and complex features on roofs (e.g., peaks, edges, troughs, chimneys, appurtenances).

Finally, roofs were filtered for developable rooftop surfaces that met basic PV suitability requirements, such as being east-, south, or west-facing and having a contiguous minimum developable area (see Table 22). Excessively shaded areas were then excluded from these developable areas. The end result is a database of rooftop plane-level data with detailed attribution regarding the plane slope, array tilt, azimuth, and developable area of all suitable rooftops in the service territory.

Roof Plane Characteristic	Commercial Buildings	Residential Buildings	
Shading	≤ 20%		
Azimuth	90° - 270°		
Tilt	≤ 60°		
Minimum Developable Area	≥3.63 m²	≥1.63 m²	

Table 23. Criteria for Determining Roof Plane Suitability for Solar PV

3.3.1.3 System Performance

Once developable roof areas are delineated and classified, solar generation profiles were simulated for each distinct developable roof plane using the PVWatts7 model in the System Advisor Model (SAM). SAM¹⁹ is a performance and economic model designed to facilitate decision making and analysis for renewable energy projects²⁰. It uses time series meteorological data, a PV performance model, and user-defined assumptions to simulate the technical performance of a given solar installation. To simulate PV productivity, this study used a 5-year range of solar irradiance time-series data from the NSRDB, summarizing generation and capacity factor profiles for the 2014-2018 meteorological years. Using time-series data, as opposed to typical meteorological year (TMY) data, is preferable for grid integration studies since it captures variability and correlation of load and variable renewable resources. Table 23 summarizes the rooftop solar PV configuration parameters used in this analysis.

PV System Characteristic	Commercial Buildings	Residential Buildings	
Ratio of module area to roof area ²¹	0.7 for flat roofs 0.98 for tilted roofs		
Module power density	170 W/m ²	172 W/m ²	
Total system losses	14.08%		
Inverter efficiency	98%		
DC-to-AC ratio	1.0		

Table 24: A	ssumptions	for PV	Performance	Simulations
-------------	------------	--------	-------------	-------------

The capacity density values used in this analysis correspond to a commercial module with 19.3% efficiency and a residential module with 19.6% efficiency, both with an overall packing efficiency of 88%. These values were selected to represent an installed mixture of primarily monocrystalline-silicon systems based on early 2020 average benchmarks from the California Net Energy Metering Database and the most recent release of Lawrence Berkeley National Laboratory's *Tracking the Sun*²². The losses from soiling, shading, wiring, and other sources are captured in the total losses system parameter, which was chosen to remain at the SAM default value for this analysis. A DC-to-AC ratio of 1.0 was selected based on sizing of existing systems in the Hawaiian Electric service territory.

¹⁹ Documentation of the mathematical models used by SAM can be found internally within the program, under the "Help" section. For more information, see <u>sam.nrel.gov</u>.

²⁰ Blair et al. 2018

²¹ For flat roofs, the ratio of module area to roof area was assumed to 0.7 to reflect the row spacing necessary to incur only approximately 2.5% losses from self-shading for south-facing modules at a 15-degree tilt. For tilted roofs, the value was assumed to be 0.98 to reflect the 1.27 cm spacing between each module for racking clamps.

²² Barbose, G., N. Darghouth. 2019. *Tracking the Sun: Pricing and Design Trends for Distributed Photovoltaic Systems in the United States*. Berkeley, CA: Lawrence Berkeley National Laboratory. https://emp.lbl.gov/sites/default/files/tracking the sun 2019 report.pdf.

3.3.2 Suitable Area Imputation

The Lidar datasets used for this analysis span 76% of the buildings in the Hawaiian Electric service territory. To estimate rooftop solar PV technical potential in these areas without Lidar coverage, a Random Forest statistical model was developed to impute the developable areas for the missing buildings. A suite of candidate variables (USCB 2018, USFS 2016, NSRDB 2014-2018) representing building, land attributes, solar resources, and population characteristics was explored to identify those with the greatest explanatory power for developable area by building.

For buildings where developable area was imputed, summarized generation and capacity factors for the same 5-year range was completed as was done for modeled roof planes. PV performance characteristics remained the same. Planes on these buildings were assumed to have a slope equaling the mean slope of their corresponding training samples, a 180° azimuth, and 8% shade (SAM default). This approach was taken to preserve local trends of solar resource data where imputation was necessary. Imputing generation per building alone instead of the built environment assumes that solar resources and variability are equivalent across sampling areas, which is not true in this case.

Subset	Training Set Description	Sample Set Description	Training Set Size	Buildings Imputed	Accuracy (%)
A	Oʻahu: valleys (exclude Halawa Valley, UH campus)	Oʻahu: deep valleys	4,653	3,773	94
В	Oʻahu: Schofield Barracks	Oʻahu: Schofield Barracks	16,826	484	97
С	Hawaiʻi: Kailua- Kona	Hawaiʻi: Captain Cook, Kēōkea	12,120	3,568	95
D & E	Oʻahu: Waianae/Makaha Maui: Kula	Hawaiʻi: Southern Hawaiʻi Island, Milolii, Ocean View, Nāʻālehu	6,368	7,100	89
F	Maui: Haiku- Pauwela, Makawao, Pukalani, Kula, Keokea	Hawaiʻi: Hawaiian Paradise Park, Pāhoa	8,545	13,017	92
G	Oʻahu: Kaneohe	Hawaiʻi: Hilo	9,619	15,228	90
H & I	Maui: Pukalani, Makawao, Kula	Hawaiʻi: Waimea	7,905	8,136	95

Table 25: Imputation and training set summary

J	Maui: North Kihei	Molokaʻi: Kanunakakai and surrounding area	6,533	3,482	93
К	Maui: Haiku- Pauwela	Molokaʻi: East Molokaʻi	5,585	1,269	91
L	Maui: Pukalani, Makawao	Lāna'i: Lāna'i City	5,587	1,093	92

The Random Forest statistical model was trained on an 80% subset of buildings with modeled developable areas from training areas provided by Hawaiian Electric. Table 24 references these training and sample sets. Various permutations of the Random Forest model were assessed against withheld training data subsets to inform optical hyper-parameterization. We evaluated the performance of the best trained model as determined by cross-validation against the remaining buildings in the training subset that were not used in model training. Overall, the training models were found to have a high degree of accuracy ($R^2=0.92$) between modeled developable area and imputed developable area (Figure 8). The goodness-of-fit comes from the building footprint areas, which are highly correlated with rooftop developable area and generation potential ($R^2=0.88$). Through model interrogation, the five most significant predictors of developable area were (in order of most to least significant) were building footprint area, building elevation, building aspect, canopy cover, and building footprint length-to-width ratio.

3.4 Analysis Results

3.4.1 All Islands

NREL estimates a total of 328,300 m² of developable area for rooftop solar on buildings in the Hawaiian Electric service territory (Table 25). Assuming the capacity densities given above, and adjusting for modeled shading, this corresponds to 7.3 GW_{DC} of capacity, or 14.608 TWh of annual generation. Of the 176,873 buildings that were modeled, 95% were deemed to be solar-suitable. The overall developable area of residential buildings is 23.76 km² while the overall developable area of commercial and industrial buildings is 17.970 km². Residential buildings (*n* = 156,843) have the highest rooftop potential at 4.124 GW while commercial and industrial buildings (*n* = 75,890) have 3.176 GW in rooftop potential. Potential annual generation for residential buildings is 7,448 GWh and 5,591 GWh for commercial and industrial buildings in the Hawaiian Electric service territory. The model found 18 residential buildings, typically multi-family dwellings, with the 1 MW or greater potential capacity; 99 commercial and industrial buildings also have 1 MW or greater potential capacity.

Island	Developable Planes (thousands)	Developable Plane Areas (km ²)	Capacity (MW)	Generation (GWh)	Capacity Factor (%)
Hawaii	369	15,560	2,163	4,586	19.42
Commercial	31,969 buildings	8,336	1,239	2,471	19.32
Residential	32,917 buildings	7,224	924	2,113	19.46
Lanai	1	355	44	112	21.20
Commercial	220 buildings	106	14	34	21.19
Residential	935 buildings	248	29	78	21.08
Maui	643	5,768	1,113	1,858	21.05
Commercial	10,654 buildings	2,878	559	932	21.10
Residential	20,347 buildings	2,889	553	925	21.02
Molokai	-	378	45	112	20.05
Commercial	1,198 buildings	240	28	71	20.22
Residential	772 buildings	138	17	41	19.80
Oahu	1,750	19,968	3,934	6,369	21.23
Commercial	31,849 buildings	6,408	1,334	2,082	21.17
Residential	101,872 buildings	13,260	2,599	4,287	21.25
Total	2,763	42,049	7,299	13,047	20.59

Table 26: Technical	potential results b	y island and zone
---------------------	---------------------	-------------------

Modeled roof planes and buildings in the Hawaiian Electric service territory regarded as suitable are generally southern-facing with low-to-moderately sloped roofs (78%). The majority of suitable roof planes for rooftop PV are < 10 square meters, which would not have been included in the technical potential assessment in previous versions of the PV Rooftop model that excluded all planes that did not have at least 10 square meters of contiguous developable area on a single plane. Average plane and building shading follow a bimodal distribution, illustrating clear priority on planes with low shading for rooftop solar deployment.

Figure 9: Summary distributions for roof plane and building models

Throughout the study area, building-level data were aggregated to Hawai'i's Tax Map Key (TMK) objects²³. Appendix C.4 contains results from the rooftop solar technical potential analysis at the TMK level. A corresponding rooftop solar resource capacity factor map can be found in Appendix A.

²³ State of Hawaii GIS Data Portal. 2018. *Tax Map Key Parcels*. [Shapefile]. Retrieved from <u>https://geoportal.hawaii.gov/datasets/parcels-hawaii-statewide</u>.

3.4.2 Oʻahu

Hawaiian Electric requested that building-level results of the rooftop solar technical potential analysis be extended to existing Hawaiian Electric customers and infrastructure datasets, including tax map key parcel for all islands and node, circuit, and substation for Oahu. Hawaiian Electric furnished these data for O'ahu. Tables for these different entities are available as attachments to this report.

In joining distribution levels to building production data, customer addresses were geocoded using Placekey API. For nodes and circuits, representative point geometries for these entities were combined as multipart polygons rather than convex hulls around shared geometry and aggregated either to TMK, node, or corresponding circuit. Node-aggregated parcels better corresponded to discrete areas in which DPV electricity generation could be directly connected. From the connections shown in Figure Figure 10, generation is aggregated to node, circuit, and substation respectively. There is additional uncertainty in the relationship of roof planes and roofs to individual customers, customers to nodes, nodes to circuits, and circuits to substations due to the imperfection of geocoding accuracy as well as inconsistent data typing between these entities.

Figure 10: Hierarchical database model for DPV distribution

3.5 Next Steps

Several opportunities exist to improve the methods and data used in this section of the report. The geographic span of Lidar scans is restricted to predominantly O'ahu and Maui with large gaps on Hawai'i, Lāna'i, Moloka'i. In fiscal year 2020, the United States Geological Survey (USGS) is set to collect new Lidar scans at a sufficiently high quality (QL2) to update and
complete this modeling effort²⁴. Additional customer data and distribution network data would allow Maui, Hawai'i, Lāna'i, and Moloka'i rooftop solar generation estimates to be aggregated beyond parcels. Finally, while the methods of PV Rooftop model have been validated previously²⁵, validation of NSRDB time series against measured irradiance data as well as existing rooftop PV system performance against modeled performance are needed.

²⁴ USGS. 2019. "FY19/20 Broad Agency Agreements and Awards (Solicitation G19AS00124)." Online document. Accessed 10 June, 2020. <u>https://www.usgs.gov/core-science-</u>systems/ngp/3dep/3d-elevation-program-broad-agency-announcement-baa-2020-awards.

²⁵ Melius, J. R. Margolis, and S. Ong. *Estimating Rooftop Suitability for PV: A Review of Methods, Patents and Validation Techniques*. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-60593. https://www.nrel.gov/docs/fy14osti/60593.pdf.

Appendix A. Solar and Wind Resource Maps

Appendix B. Geographic Exclusions

Table 27: Full Geographic Exclusions

					_			1									
										WIND-1	- WIND-1-	WIND-2-	WIND-2-	WIND-3-	WIND-3-	WIND-4-	WIND-4-
		PV-1-3	PV-1-5	PV-1-HS	PV-2-3	PV-2-5	PV-2-HS	PV-3-3	PV-3-5	20	40	20	40	20	40	20	40
Exclusion Category	Land Category	L															
Federal Lands	National Guard	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include
	National Park Service	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	Other Federal Lands	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include
	U.S. Department of Defense Lands	Exclude	Exclude	Exclude	Include	Include	Include	Include	Include	Exclude	Exclude	Include	Include	Exclude	Exclude	Include	Include
	U.S Fish & Wildlife Service	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	State Park	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	State Bird Sanctuary	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	State Cultural/Historic Area	Exclude	Evoludo	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Evoludo	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	State Ecological Pesanya	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	State Ecological Reserve	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
Charles Daraha	State Estuary Reserve	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
State Parks	State Game Land	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	State Game or Wildlife Sanctuary	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	State Monument	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	State Nature Preserve/Reserve	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	State Wildlife Mgmt. Area	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
L	Other State Lands	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
Dept. of Defense	Dept. of Defense Lands	Exclude	Exclude	Exclude	Include	Include	Include	Include	Include	Exclude	Exclude	Include	Include	Exclude	Exclude	Include	Include
Wetlands	Estuarine and Marine Deepwater	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	Estuarine and Marine Wetland	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	Fresh Emergent Wetland	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	Fresh Ecrested/Shrub Wetland	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	Fresh, Forested/Shrub Wetland	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	Fresh. Pond	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	Lake	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	Riverine	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	Highest	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
Lava flow	Second Highest	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	Kilauea Lava Flow (2018)	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
Flood Zones	"A"	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
Ag Areas	Important Agricultural Lands (IAG)	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	Urban Areas	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
Urban Zones	HCDA Oahu Affordable Housing Prj	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
Slope	Slope percent > 3%	Exclude	Include	Include	Exclude	Include	Include	Exclude	Include	Include	Include	Include	Include	Include	Include	Include	Include
	Slope percent > 5%	Exclude	Exclude	Include	Exclude	Exclude	Include	Exclude	Exclude	Include	Include	Include	Include	Include	Include	Include	Include
	Slope percent > 20%	Exclude	Exclude	Include	Evolude	Exclude	Include	Exclude	Exclude	Evolude	Include	Exclude	Include	Exclude	Include	Exclude	Include
	Slope percent > 20%	Exclude	Exclude	Exclude	Exclude	Exclude	Evolude	Exclude	Exclude	Exclude	Evoludo	Exclude	Evoludo	Exclude	Evolude	Exclude	Exclude
	Stope percent > 40%	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	nuau Setback (173m)	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Exclude	Exclude	Exclude	Exclude
SetDacks	Building Setback (175m)	include	Include	Include	include	include	include	include	include	include	include	include	include	Exclude	Exclude	Exclude	Exclude
L	Transmission ROW Setback (173m)	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Exclude	Exclude	Exclude	Exclude
Land Study Bureau	Class A Land	Include	Include	Include	Include	Include	Include	90% Exc.	90% Exc.	Include	Include	Include	Include	Include	Include	Include	Include
Agricultural Lands	Class B Land	Include	Include	Include	Include	Include	Include	90% Exc.	90% Exc.	Include	Include	Include	Include	Include	Include	Include	Include
	Class C Land	Include	Include	Include	Include	Include	Include	90% Exc.	90% Exc.	Include	Include	Include	Include	Include	Include	Include	Include
Sea Level Rise	SLR 6ft - 50yr	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	SLR 6ft - 100vr	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	SLR 6ft - 500vr	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
Teunami Evacuations	Teumami Europuntion Zonos	Evolude	Evelude	Evolution	Evelude	Evelude	Evelude	Evelude	Evelude	Eveluate	Evolution	Evelude	Evelude	Evelude	Evelude	Evelude	Evelude
Zopes	I sunami Evacuation Zones	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
Zones	Extreme Isunami Evacuation Zones	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include
RE Development Zones	Oahu, Molokai, Hawaii (x2)	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include
	A-1, A-2, A-3, Aloha, AMX-1, AMX-																
Only 1	2, AMX-3, Apart, ApartMix, B-1. B-																
Oahu Land Use Ordinance - Urban Zones	2, BMX-3, BMX-4, I-1, I-2, I-3, IMX-	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude	Exclude
	1, Kak, MU, PU, Pub, R-10, R-20. R-																
	3.5, R-5, R-7.5, ResMix, Resort, WI																

GIS Layer	Description	Source
Federal Lands	Vector locations of various federal land-classified areas	ESRI Federal Lands GIS Layer
State Parks	Vector locations of various state parks for Hawaii	HI Government Geoportal
Dept. of Defense Lands	Vector locations of Department of Defense lands	HI Government Geoportal
Wetlands	Vector locations of various wetland categories	HI Government Geoportal
Lava Flow Areas	Vector locations of various lava flow zones	HI Government Geoportal
Kilauea Lava Flow Footprint	Vector location of 2018 Kilauea lava flow	USGS ScienceBase-Catalog
Flood Zones	Vector locations of flood ones	HI Government Geoportal
Agricultural Areas	Vector locations of lands designated as Important Agricultural Lands (IAG)	HI Government Geoportal
Urban Zones	Vector locations of urban and suburban areas	Global Human Settlement - Settlement Model
Oahu Affordable House Projects	Vector locations of land designated for affordable housing projects	Hawaii Community Development Authority
Slope	Slope percent derived from continuous elevation digital elevation model data.	National Elevation Dataset
Roads	Vector roadways	HERE Street
Buildings	Vector buildings and structures	Microsoft building footprints
Transmission Right-of-Ways	Vector transmission lines	Homeland Security Information Network & Hawaiian Electric
Land Study Bureau Agricultural Areas	Vector locations of various agricultural land classes	HI Planning Data Portal
Sea Level Rise	Vector locations of areas under threat to sea level rise	Data Provided by Jupiter
Tsunami Evacuation Zones	Vector locations of tsunami evacuation zones	HI Government Geoportal
RE Development Zones	Vector locations of land designated for renewable energy development	Data Provided by Hawaiian Electric
Oahu Land Use Ordinance - Urban Zones	Vector locations of various land ordinance categories for Oahu	Data Provided by Hawaiian Electric

Appendix C. Technical Potential Summarizations C.1 1-Axis Tracking Summary Results

Scenario: PV-1-3

Cumulative Capacity (MW)

Cumulative Capacity (MW)

Cumulative Capacity (MW)

Scenario: PV-1-5

Available Capacity (32 MW/km2)

Scenario: PV-1-HS

Available Capacity (32 MW/km2)

Scenario: PV-2-3

Available Capacity (32 MW/km2)

Scenario: PV-2-5

Available Capacity (32 MW/km2)

Scenario: PV-2-HS

Scenario: PV-3-3

Cumulative Capacity (MW)

Cumulative Capacity (MW)

Available Capacity (32 MW/km2)

Scenario: PV-3-5

C.2 Fixed Tilt Summary Results

Scenario: PV-1-5

Available Capacity (36 MW/km2)

Scenario: PV-1-HS

Available Capacity (36 MW/km2)

Scenario: PV-2-3

Scenario: PV-2-5

Available Capacity (36 MW/km2)

Scenario: PV-2-HS

Available Capacity (36 MW/km2)

Scenario: PV-3-3

Available Capacity (36 MW/km2)

Scenario: PV-3-5

C.3 Wind Summary Results

Scenario: WIND-1-HS

Scenario: WIND-2-20

0 -

Cumulative Capacity (MW)

ό

Cumulative Capacity (MW)

ό

Cumulative Capacity (MW)

Scenario: WIND-2-HS

Scenario: WIND-3-20

Scenario: WIND-3-HS

Supply Curve (3 MW/km2)

Scenario: WIND-3-HS

Scenario: WIND-4-20

18°57

ି

ۍ ا

°%) ^»`

ŝ

Cumulative Capacity (MW)

800 1000

Capacity (MW)

Supply Curve (3 MW/km2) Scenario: WIND-4-20 Hawaii Lanai Site LCOE (\$/MWh) Site LCOE (\$/MWh) 0 ό ó Cumulative Capacity (MW) Cumulative Capacity (MW) Molokai Maui Oahu Site LCOE (\$/MWh) Site LCOE (\$/MWh) Site LCOE (\$/MWh) ΰ

ò

Cumulative Capacity (MW)

Scenario: WIND-4-HS

Supply Curve (3 MW/km2) Scenario: WIND-4-HS Hawaii Lanai Site LCOE (\$/MWh) Site LCOE (\$/MWh) 0 ó 60'00 ό Cumulative Capacity (MW) Cumulative Capacity (MW) Maui Molokai Oahu 240 220 200 180 160 Site LCOE (\$/MWh) Site LCOE (\$/MWh) ΰ ó

Cumulative Capacity (MW)

Cumulative Capacity (MW)

C.4 Rooftop Solar Summary Results

Developable Area

Capacity

Annual Generation

Appendix D. Ulupono Follow-on Scenarios

D.1 Introduction

NREL researchers, at the request of the Ulupono Initiative, produced additional system configurations and land availability scenarios. NREL researchers made changes to land availability assumptions that are impacted by maximum slope thresholds, the presence of Department of Defense lands, the presence of agricultural lands, and the presence of golf courses. Additionally, the capacity density of PV systems were increased to 38 MW/sq.km, and summarizations of wind resources were expanded to include lands less than 6.5 m/s annual average wind speeds.

D.2 Changes to System Configurations

The solar and wind system configurations listed in Table 1 and Table 2 remain unchanged for these scenarios.

The capacity density listed in Table 3 is unchanged for wind at 3 MW/sq.km but was increased from 32 MW/sq.km to 38 MW/sq.km for a 1-axis tracking PV system. A fixed tilt system was not included in these analysis results.

Table 4 lists the system cost assumptions that were used in combination with the capacity factors to calculate the site LCOE. A special cost adder of 5 cents per watt was added to the capital cost of any PV sites falling on lands with an average slope of greater than 15 percent.

D.3 Changes to Land Availability Assumptions

Table 28 lists the detailed exclusion assumptions used for each of the solar and wind scenarios.

		PV	Wind	PV	Wind	PV	PV
			Wind-Alt-		Wind-Alt-		
		PV-Alt-1	1	PV-Alt-2	2	PV-Alt-3	PV-Alt-4
Exclusion Category	Land Catagony						
		ovelude	ovelude	ovelude	ovelude	ovelude	ovelude
		exclude	exclude	exclude	exclude	exclude	exclude
	National Park Service	exclude	exclude	exclude	exclude	exclude	exclude
Federal Lands	Other Federal Lands	exclude	exclude	exclude	exclude	exclude	exclude
	U.S. Department of Defense Lands	exclude	exclude	include	include	exclude	include
	U.S Fish & Wildlife Service	exclude	exclude	exclude	exclude	exclude	exclude
	State Park	exclude	exclude	exclude	exclude	exclude	exclude
	State Bird Sanctuary	exclude	exclude	exclude	exclude	exclude	exclude
	State Cultural/Historic Area	exclude	exclude	exclude	exclude	exclude	exclude
	State Ecological Reserve	exclude	exclude	exclude	exclude	exclude	exclude
	State Estuary Reserve	exclude	exclude	exclude	exclude	exclude	exclude
State Parks	State Game Land	exclude	exclude	exclude	exclude	exclude	exclude
	State Game or Wildlife Sanctuary	exclude	exclude	exclude	exclude	exclude	exclude
	State Monument	exclude	exclude	exclude	exclude	exclude	exclude
	State Nature Preserve/Reserve	exclude	exclude	exclude	exclude	exclude	exclude
	State Wildlife Mgmt. Area	exclude	exclude	exclude	exclude	exclude	exclude
L	Other State Lands	exclude	exclude	exclude	exclude	exclude	exclude
Dept. of Defense	Dept. of Defense Lands	exclude	exclude	include	include	exclude	include
	Estuarine and Marine Deepwater	exclude	exclude	exclude	exclude	exclude	exclude
	Estuarine and Marine Wetland	exclude	exclude	exclude	exclude	exclude	exclude
	Fresh. Emergent Wetland	exclude	exclude	exclude	exclude	exclude	exclude
Wetlands	Fresh. Forested/Shrub Wetland	exclude	exclude	exclude	exclude	exclude	exclude
	Fresh. Pond	exclude	exclude	exclude	exclude	exclude	exclude
	Lake	exclude	exclude	exclude	exclude	exclude	exclude
	Riverine	exclude	exclude	exclude	exclude	exclude	exclude
	Highest	exclude	exclude	exclude	exclude	exclude	exclude
Lava flow	Second Highest	exclude	exclude	exclude	exclude	exclude	exclude
	Kilauea Lava Flow (2018)	exclude	exclude	exclude	exclude	exclude	exclude
Flood Zones	"A"	exclude	exclude	exclude	exclude	exclude	exclude
Ag Areas	Important Agricultural Lands (IAG)	exclude	exclude	exclude	exclude	exclude	exclude
		exclude	exclude	exclude	exclude	exclude	exclude
Urban Zones	HCDA Oahu Affordable Housing Pri	exclude	exclude	exclude	exclude	exclude	exclude
	Slope percent > 3%	include	linclude	include	include	include	include
	Slope percent > 5%	include	include	include	include	include	include
	Slope percent > 378	include	include	include	include	include	include
Slone	Slope percent > 15%	cost addr	include	cost addr	include	exclude	exclude
Siope	Slope percent > 20%	cost addr	aveluda	cost addr	ovcludo	oveludo	ovcludo
	Slope percent > 20%	cust audi	exclude		exclude	exclude	exclude
	Slope percent > 40%	exclude	exclude	exclude	exclude	exclude	exclude
	Slope percent > 40%	exclude	exclude	exclude	exclude	exclude	exclude
Catheralia	KOAD SETDACK (1/3m)	include	exclude	include	exclude	include	include
Setbacks	Building Setback (173m)	include	exclude	include	exclude	include	include
		include	exclude	Include	exclude	Include	Include
Land Study Bureau	Class A Land	exclude	include	exclude	include	exclude	exclude
Agricultural Lands	Class & Land	10% Inc	include	10% Inc	include	10% Inc	10% Inc
		10% Inc	include	10% Inc	Include	10% Inc	10% Inc
	SLR 1ft - 50yr	n/a	n/a	n/a	n/a	n/a	n/a
Sea Level Rise	SLR 1ft - 100yr	n/a	n/a	n/a	n/a	n/a	n/a
	SLR 1ft - 500yr	n/a	n/a	n/a	n/a	n/a	n/a
	SLR 3.2 ft at 1 ft flood height - 100yr (majority pixels)	exclude	exclude	exclude	exclude	exclude	exclude
Tsunami Evacuations	Tsunami Evacuation Zones	exclude	exclude	exclude	exclude	exclude	exclude
Zones	Extreme Tsunami Evacuation Zones	include	include	include	include	include	include
RE Development Zones	Oahu. Molokai, Hawaii (x2)	include	include	include	include	include	include
Oahu Land Use	A-1, A-2, A-3, Alona, Alvix-1, AMX-2, AMX-3, Apart,	ovelude	ovelude	ovclude	ovelude	ovelude	ovelude
Ordinance - Urban Zones	Apartivita, D-1, D-2, DIVIA-3, DIVIA-4, I-1, I-2, I-3, IIVIA-1,	exclude	exclude	exclude	exclude	exclude	exclude
	ran, 1910, FU, FUU, R-10, R-20, R-3.3, R-3, R-7.3, ResMix Resort W/I						
			+				
Private Land Use	GOIT COURSES	exclude	exclude	exclude	exclude	exclude	exclude

Table 28: Ulupono Scenarios Geographic Exclusions

D.4 Analysis Results

Molokaʻi

Maui

Lānaʻi

Hawai'i

The tables below summarize the total available capacity of each of the PV and wind scenarios developed with input from the Ulupono Initative.

PV and Wind Capacity Summarizations

Ulupono Initiative Scenarios; Lands with Capacity Factor > 10%					
Island PV-Alt-1 PV-Alt-2 PV-Alt-3 PV-Alt-4					
Oʻahu	3810	7026	1405	2932	

Table 29: Summarized installable capacity in MW for Utility-Scale 1-Axis Tracking PV Systems
Ulupono Initiative Scenarios; Lands with Capacity Factor > 10%

Table 30: Summarized installable capacity in MW for Utility-Scale Wind Systems Ulupono Initiative Scenarios; No Wind Speed Threshold

Island	WIND-Alt-1	WIND-Alt-2
Oʻahu	256	365
Moloka'i	515	515
Maui	767	767
Lānaʻi	509	509
Hawaiʻi	5037	5974

PV Capacity by Capacity Factor for All Islands

 Table 31: Utility-Scale Solar PV Potential (MWac – 1-Axis Tracking) for O'ahu

 Ulupono Initiative Scenarios

NetCF	PV-Alt-1	PV-Alt-2	PV-Alt-3	PV-Alt-4
>= 0.10	3810	7026	1405	2932
>= 0.12	3810	7026	1405	2932
>= 0.14	3810	7026	1405	2932
>= 0.16	3581	6795	1374	2901
>= 0.18	3224	6122	1279	2781
>= 0.20	2511	4422	1149	2381

NetCF	PV-Alt-1	PV-Alt-2	PV-Alt-3	PV-Alt-4
>= 0.10	10411	10411	7107	7107
>= 0.12	10411	10411	7107	7107
>= 0.14	10411	10411	7107	7107
>= 0.16	10411	10411	7107	7107
>= 0.18	10093	10093	7089	7089
>= 0.20	9782	9782	6993	6993

Table 32: Utility-Scale Solar PV Potential (MWac - 1-Axis Tracking) for Moloka'l Ulupono Initiative Scenarios

Table 33: Utility-Scale Solar PV Potential (MWac - 1-Axis Tracking) for Maui Ulupono Initiative Scenarios

NetCF	PV-Alt-1	PV-Alt-2	PV-Alt-3	PV-Alt-4
>= 0.10	13687	13687	6613	6613
>= 0.12	13687	13687	6613	6613
>= 0.14	13661	13661	6608	6608
>= 0.16	13252	13252	6535	6535
>= 0.18	13012	13012	6459	6459
>= 0.20	10866	10866	5511	5511

Table 34: Utility-Scale Solar PV Potential (MWac - 1-Axis Tracking) for Lāna'i Ulupono Initiative Scenarios

NetCF	PV-Alt-1	PV-Alt-2	PV-Alt-3	PV-Alt-4
>= 0.10	9691	9691	6330	6330
>= 0.12	9691	9691	6330	6330
>= 0.14	9691	9691	6330	6330
>= 0.16	9691	9691	6330	6330
>= 0.18	9691	9691	6330	6330
>= 0.20	9691	9691	6330	6330

NetCF	PV-Alt-1	PV-Alt-2	PV-Alt-3	PV-Alt-4
>= 0.10	76179	89470	62198	74751
>= 0.12	76039	89330	62104	74656
>= 0.14	75153	88444	61384	73936
>= 0.16	64089	77379	52665	65217
>= 0.18	44134	57416	35854	48398
>= 0.20	30216	43072	24755	36872

 Table 35: Utility-Scale Solar PV Potential (MWac - 1-Axis Tracking) for Hawai'i

 Ulupono Initiative Scenarios

Wind Capacity by Wind Speed for All Islands

Table 36: Wind Potential (MWac) for O'ahu Ulupono Initiative Scenarios

PV-Alt-3	PV-Alt-4
256	365
256	365
256	365
233	343
90	168
25	60
	PV-Alt-3 256 256 256 233 90 25

Table 37: Wind P	otential	(MWac)	for Moloka'i
Ulupono	Initiative	e Scena	rios

WS (m/s)	PV-Alt-3	PV-Alt-4
> 0	515	515
>= 2	515	515
>= 4	515	515
>= 6	515	515
>= 8	426	426
>= 10	8	8

Table 38: Wind Potential (MWac) for Maui Ulupono Initiative Scenarios

WS (m/s)	PV-Alt-3	PV-Alt-4

> 0	767	767
>= 2	767	767
>= 4	495	495
>= 6	312	312
>= 8	176	176
>= 10	22	22

Table 39: Wind Potential (MWac) for Lāna'i Ulupono Initiative Scenarios

WS (m/s)	PV-Alt-3	PV-Alt-4
> 0	509	509
>= 2	509	509
>= 4	508	508
>= 6	327	327
>= 8	148	148
>= 10	0	0

Table 40: Wind Potential (MWac) for Hawai'i Ulupono Initiative Scenarios

WS (m/s)	PV-Alt-3	PV-Alt-4
> 0	5037	5974
>= 2	4496	5434
>= 4	2042	2371
>= 6	819	819
>= 8	311	311
>= 10	111	111

PV Summary Results

Available Capacity (38 MW/km2)

Scenario: PV-ALT-1

Available Capacity (38 MW/km2)

Scenario: PV-ALT-2

Supply Curve (38 MW/km2)

Scenario: PV-ALT-3

Wind Summary Results

Supply Curve (3 MW/km2)

Scenario: SCEN-WIND-ALT1

Capacity Factor Class

Capacity Factor Class

